The transposable element is a DNA sequence that can be changed its position within the genome, sometimes it can create or reverse mutations and altering the cell's genome size. Target region amplification polymorphism (TRAP) is a rapid and efficient PCR-based marker technique, which uses bioinformatics tools and expressed sequence tag (EST) database information to generate polymorphic markers around targeted candidate gene sequences. TE-TRAP is a new marker system which used terminal inverted repeat (TIR) instead of targeted candidate gene sequences. Sorghum holds a good potential plant organism for transposon tagging due to its small genome size, low amount of repetitive DNA and co-linearity with other cereal genomes, which allows the use of information derived from sorghum in other cereal grasses. IS2868 of sorghum accession was treated Gamma irradiation on seed. To define availability and utilization of TE-TRAP, twenty-one accessions were used to evaluate the genetic diversity and underlying relationships. One-thousand thirty-three TE-TRAP markers were amplified by thirty-one primer combination. Altogether, 712 (62.8%) markers were observed polymorphic segregation, whereas 421 (37.2%) showed monomorphic patterns. To estimate genetic differentiation of population by various gamma radiation doses, the analysis of molecular variance (AMOVA) was performed using 4 to 5 different radiation doses population of M1 sorghum individuals. This study and marker system will provide valuable information to assist radiation mutation breeding.