Tomato spotted wilt virus (TSWV) causes one of the most destructive viral diseases that threaten tomato (Solanum lycopersicum) worldwide. So far, eight TSWV resistance genes, Sw1a, Sw1b, sw2, sw3, sw4, Sw-5b, Sw-6, and Sw-7 have been identified and Sw-5b has been incorporated into tomato for prevention of TSWV. The objectives of this research are first to discover single nucleotide polymorphisms (SNPs) in Sw-5 alleles and then to develop SNP markers to distinguish resistant genotypes against TSWV for marker-assisted breeding in tomato. First, DNA sequences of Sw-5b alleles from both resistant and susceptible cultivars amplified using known Sw-5 gene-based marker was analyzed. The single functional SNP (G→A) was detected as non-synonymous substitution because this SNP causes change of arginine (Arg599) to glutamine (Gln599). Next, the primer pair for high resolution melting analysis (HRM) was designed around this SNP. To determine accuracy of this SNP marker to distinguish resistant Sw-5b genotypes against TSWV, genotypes of 32 commercial tomato cultivars were checked. The newly developed SNP marker could select six cultivars carrying resistant Sw-5b genotype, which was 100% correlated with genotypes based on the gene-based marker. These results indicate that the SNP maker developed in this study could be useful for better tracking resistance to TSWV in tomato breeding.