논문 상세보기

Association of haplotype variations in GmCHX1 with salt tolerance in wild and cultivated soybeans

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/302811
서비스가 종료되어 열람이 제한될 수 있습니다.
한국육종학회 (The Korean Breeding Society)
초록

Soybean [Glycine max (L.) Merr.] is a major agricultural crop widely used for providing human and animal food owing to its high protein and oil content. For this reason, they have been consumed in Asia and world greatly and demand is ever increasing. Soybean is classified as a moderately salt-sensitive crop and its production is greatly affected due to increasing salinity stress. About 8 % of the world’s total land is salt-affected. In Korea, around 9 % of total agricultural land (approximately 130,000ha) was reclaimed since 1960's. In order to meet the demand for soybean and to solve arable land shortage problem, it is unavoidable to cultivate soybean in salt-affected soils. Fortunately, soybean germplasm has been shown to have salt-tolerant phenotypes, which have been used to identify the salt-tolerant genes. GmCHX1, a novel ion transporter, is one of the genes known to confer salt tolerance in soybeans. Present study was conducted to understand the effects of sequence variations of GmCHX1, on salt tolerance in wild and cultivated soybeans. A total of 1026 (301 lines of G. max and 725 lines of G. soja) lines were phenotyped for salt tolerance in greenhouse conditions. At the V1-V2 growth stage, the plants were treated with 100mM NaCl solution for two weeks and thereafter the response was measured depending on leaf scorch score (1-health, 3-mid, 5-dead). About 20 lines found to show tolerance to saline conditions and were selected for sequence analysis of GmCHX1. Most of the haplotypes detected in this study corresponded with the haplotype patterns in previous studies. However, several lines showed different patterns of polymorphism in the coding region, suggesting that sequencing of more lines and analysis for the polymorphism in GmCHX1 is needed in order to identify new haplotypes that could confer greater salt tolerance.

저자
  • Jeong Hwa Kim(School of Applied Bioscience, Kyungpook National University)
  • Jong-Tae Song(School of Applied Bioscience, Kyungpook National University)
  • Jeong-Dong Lee(School of Applied Bioscience, Kyungpook National University) Corresponding Author