논문 상세보기

매립물 특성 조사를 위한 다변량 통계분석 기법의 응용 KCI 등재

Application of Multivariate Statistical Analysis Technique in Landfill Investigation

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/304115
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국지구과학회지 (The Journal of The Korean Earth Science Society)
한국지구과학회 (The Korean Earth Science Society)
초록

난지도 매립장 매립물의 특성을 조사하기 위해서 중력, 자력, LandSat TM 열적외선 밴드 자료, 매립장의 표면에서 측정한 침하량 자료 등을 다변량 통계분석기법을 응용하여 분석하였다. 분석에 이용한 자료들은 각기 상이한 깊이에 관한 정보를 제공하기 때문에 측정된 총 자력자료와 중력자료는 자극화변환된 자력이상과 매립장의 3차원 밀도분포로 각기 전환하였으며, 본 연구에서는 이 중 매립장의 상부층에 관한 정보를 이용하였다. 통계분석은 침하량 측정 지점들을 대상으로 수행하였으며, 이들 지점에서의 자극화변환 자력이상, 매립물의 밀도, LandSat TM 열적외선 밴드 값들은 내삽방법을 이용하여 구하였다. 자료분석에 사용한 다변량 통계분석 기법은 개체간의 기하학적인 거리를 이용하여 군집화하는 집락분석으로, 개체간의 거리 계산시 각 자료간의 상이한 측정단위가 주는 효과를 제거하기 위해서 사전에 표준화를 실시하였다. 군집화는 체계적 군집화 방법을 이용하여 수행하였다. 물리적 특성을 바탕으로 분류된 최적의 군집수는 수상도에서 나타난 결과에 따르면 총 6개의 군집으로 나타났다. 본 연구의 결과는 통합된 지구물리자료에 다변량 통계분석 기법을 적용함으로써 복합적 인 쓰레기 매립장의 특성 규명이 가능함을 시사한다.

To investigate the nature of the waste materials in the Nanjido Landfill, we have conducted multivariate statistical analysis of geophysical data set comprised of magnetic, gravity, LandSat TM thermal band and surface depression measurement data. Because these data sets show different responses to the depth, we have transformed the observed total field magnetic data and gravity data to the residual reduced-to-pole(RTP) magnetic anomalies and the three dimensional density anomalies, respectively, and utilized the informations about the upper shallow part of the landfills only in the following process. For the statistical analysis at the points of depression measurement, the magnetic, density and LandSat data values at these points are determined by interpolation process. Since the multivarite statistical analysis technique utilizes a clustering algorithm for classification of data set and we have measured the dissimilarity between objects by using Euclidean distance, standardization was applied prior to distance calculation in order to eliminate any scaling effects due to different measurement unit of each data set. The hierarchial grouping technique was used to construct the dendrogram. The optimum number of statistical groups(clusters), which are classified on the basis of geophysical and geotechnical characteristics, appeared to be six on the resulting dendrogram. The result of this study suggests that the dimension and nature of the multicomponent waste landfills can be identified by application of the multivarite statistical analysis technique to integrated geophysical data sets.

저자
  • 권병두(서울대학교 지구과학교육과) | Kwon, Byung-Doo
  • 김차섭(육군사관학교 환경학과) | 김차섭