하부 대류권의 대기물현상과 마이크로파 표면 방출율를 전구적으로 조사하기 위하여 1981-93년 기간의 MSU 채널1 밝기온도와 대기대순환 모델(GCM) 재분석 월평균 자료를 사용하였다. 모델재분석 채널1 자료의 평균값이 MSU 채널1 가중함수를 기초로 하여 세 종류의 모델(NCEP ECMWF, GEOS) 재분석에서 온도장을 이용하여 재구성되었다. 모델재분석 채널1 온도는 하부 대류권의 열적 상태를 주로 반영하기 때문에, 해양과 육지에서 계절에 관계없이 각 반구 여름철에 최대값을 나타내었다. MSU 채널1 밝기온도는 해양에서 대기물현상으로 인해 열대 및 남태평양 수렴대들 에서 극대값을 보였다. 또한 이 밝기온도는 빙하/눈 방출율 효과로 인하여 고위도 해양에서 증가하는 반면에, 고위도육지에서는 감소하였다. 열대 및 남태평양 수렴대들의 계절적 이동은 GCM과 MSU 사이의 채널1 온도 차의 분포에서 체계적으로 나타났다. 이러한 온도차의 극소값 위치에서 추정할 때, 열대 수렴대는 가을에 9N까지 북상하였고, 남태평양 수렴대는 북반구 가을과 겨울에 12S까지 남하하였다. 고위도 경우에는 해빙이 각 반구의 겨울에 북반구에서 53N까지 남하하고, 남반구에서는 58S까지 북상하였다 복사전달 결과를 이용하여 MSU 채널1 밝기온도에 대한 대기물현상과 표면 방출율의 부분적인 기여도를 분리하여 조사하였다. ITCZ지역에서 4-6K의 밝기온도 상승은 1-1.5mm/day의 대기물현상 증가에, 그리고 고위도 해양에서의 10-30K의 상승은 0.6-0.9값의 해빙 방출율의 기여에 해당하였다.
The data of satellite-observed Microwave Sounding Unit (MSU) channel 1 (Ch1) brightness temperature and General Circulation Model (GCM) reanalyses over the globe have been used to investigate low tropospheric hydrometeors and microwave surface emissivity during the period from January 1981 to December 1993. The average of GCM Ch1 temperature has been reconstructed from three kinds of reanalyses, based on the MSU weighting function. Since the GCM temperature mainly corresponds to the thermal state of the lower troposphere without the difference in the emissivity between ocean and land, it is higher in summer than in other seasons over the regions. The MSU temperature over the ocean shows its maximum at the ITCZ and the SPCZ due to hydrometeors. Over high latitude ocean, the temperature is enhanced because of sea ice emissivity, while it is reduced over the land. The seasonal displacement of the ITCZ and the SPCZ systematically appeared in the difference of Ch1 temperature between the GCM and the MSU. The difference values decrease in the regions of the ITCZ, the SPCZ, and the sea ice because of the increase of the MSU temperature. According to the local minima of the values, the ITCZ moves norhward to 9 N in fall, and the SPCZ moves southward to 12 S in boreal fall and winter. The sea ice in the northern hemisphere is extended southward to 53 N in winter, while the ice in the southern hemisphere, northward to 58 S in boreal summer. We also have discussed the separated contribution from hydrometeors and surface emissivity to the MSU Ch1 temperature, utilizing radiative transfer theory. The increase of 4-6K in the temperature over the ITCZ is inferred to result from hydrometeors of 1-1.5mm/day, and furthermore the increase of 10-30K over the high latitude ocean, ice emissivity of 0.6-0.9.