미계측유역의 유출량 모의는 수문학 분야에서 필수적인 사항이다. 강우-유출 모형을 이용하여 신뢰성 있는 유출량을 모의하기 위한 핵심사항은 강우-유출 모형의 매개변수를 추정하는 것이다. 하지만 현재 우리나라는 불충분한 수문자료로 인해 매개변수 추정에 어려움이 존재한다. 본 연구의 목표는 불확실성 반영을 위한 Bayesian 통계기법 기반의 강우-유출 모형의 매개변수를 지역화 하는 것이다. 그 방법은 다음과 같다. 첫째, 본 연구는 세계적으로 널리 사용되고 있는 Sacramento 강우-유출 모형에 Bayesian Markov Chain Monte Carlo 기법을 연계한 Bayesian Sacramento 강우-유출 모형을 사용하여 계측유역을 대상으로 13개 매개변수를 최적화하고 각 매개변수의 사후분포를 도출하였다. 둘째, 매개변수와 유역특성인자 사이에 회귀특성을 얻기 위해 다중선형회귀분석을 적용하여 유역특성을 고려한 지역화 매개변수를 결정하였다. 다중회귀분석을 통하여 산정된 지역화 매개변수를 계측유역에 전이하여 유출량을 모의 후 통계적 효율기준인 N-S계수, 일치계수 및 상관계수를 사용하여 지역화 매개변수 검증을 수행하였다.
The simulation of natural streamflow at ungauged basins is one of the fundamental challenges in hydrology community. The key to runoff simulation in ungauged basins is generally involved with a reliable parameter estimation in a rainfall-runoff model. However, the parameter estimation of the rainfall-runoff model is a complex issue due to an insufficient hydrologic data. This study aims to regionalize the parameters of a continuous rainfallrunoff model in conjunction with a Bayesian statistical technique to consider uncertainty more precisely associated with the parameters. First, this study employed Bayesian Markov Chain Monte Carlo scheme for the estimation of the Sacramento rainfall-runoff model. The Sacramento model is calibrated against observed daily runoff data, and finally, the posterior density function of the parameters is derived. Second, we applied a multiple linear regression model to the set of the parameters with watershed characteristics, to obtain a functional relationship between pairs of variables. The proposed model was also validated with gauged watersheds in accordance with the efficiency criteria such as the Nash-Sutcliffe efficiency, index of agreement and the coefficient of correlation.