논문 상세보기

ANFIS를 이용한 철근콘크리트 구조물의 탄산화 깊이 평가

Evaluation of Carbonation Depth in Reinforced Concrete Strucuture Using ANFIS

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/312193
서비스가 종료되어 열람이 제한될 수 있습니다.
한국구조물진단유지관리공학회 (The Korea Institute For Structural Maintenance and Inspection)
초록

In reinforced concrete (RC) structures, concrete carbonation depth is an important criterion for the deterioration of durability of RC structures. Concrete carbonation is influenced by multiple factors such as chloride attack, crack, concrete compressive strength, etc. However, due to its complex mechanism, most previous studies considered only one or two deterioration factors to estimate the concrete carbonation depth. In this study, therefore, inspection data were collected from 8 buildings, and the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm that estimates the concrete carbonation depth of RC structures has been proposed. The proposed ANFIS model provided good estimations on the carbonation depths.

저자
  • 조해창(서울시립대학교 건축학부, 박사과정) | Cho, Hae-Chang
  • 주현진(서울시립대학교 건축학부, 박사과정) | Ju, Hyun-Jin
  • 오재열(서울시립대학교 건축학부, 박사과정) | Oh, Jae-Yuel
  • 이경진(한국전력공사 전력연구원, 부장) | Lee, Kyung Jin
  • 김강수(서울시립대학교 건축학부, 교수) | Kim, Kang Su