NaLa1-x(MoO4)2:Ho3+/Yb3+ phosphors with the correct doping concentrations of Ho3+ and Yb3+ (x = Ho3++Yb3+, Ho3+ = 0.05 and Yb3+ = 0.35, 0.40, 0.45 and 0.50) were successfully synthesized by the microwave-modified sol-gel method. Well-crystallized particles formed after heat-treatment at 900 oC for 16 h showed a fine and homogeneous morphology with particle sizes of 3-5 μm. The optical properties were examined using photoluminescence emission and Raman spectroscopy. Under excitation at 980 nm, the UC intensities of the doped samples exhibited strong yellow emissions based on the combination of strong emission bands at 545-nm and 655-nm emission bands in green and red spectral regions, respectively. The strong 545-nm emission band in the green region corresponds to the 5S2/5F4→ 5I8 transition in Ho3+ ions, while the strong emission 655-nm band in the red region appears due to the 5F5→ 5I8 transition in Ho3+ ions. Pump power dependence and Commission Internationale de L'Eclairage chromaticity of the upconversion emission intensity were evaluated in detail.