본 실험에서 제안된 질감특징분석 알고리즘은 지방간 환자의 CT영상을 이용하여 정상영상과 질환영상 으로 구분하여, 정상 간 CT영상과 지방간 CT영상을 생성하고 제안된 질감특징분석을 이용한 컴퓨터보조 진단 시스템에 적용하여 6개의 파라메타로 정량적 분석을 통해 지방간 CT영상의 질환 인식률을 도출하고 평가하였다. 결과로 지방간 CT영상 30증례 중에서 각각의 파라메타별 질감특징 값에 대한 인식률은 평균 밝기의 경우 100%, 엔트로피의 경우 96.67%, 왜곡도의 경우 93.33%로 높게 나타났고, 평탄도의 경우 83.3 3%, 균일도의 경우 86.67%, 평균대조도의 경우 80%로 다소 낮은 질환 인식률을 보였다. 따라서 본 연구의 결과를 바탕으로 의료영상의 컴퓨터보조진단 시스템으로 발전된 프로그램을 구현한다면 지방간 CT영상의 질환부위 자동검출 및 정량적 진단이 가능해 컴퓨터보조진단 자료로서 활용이 가능할 것으로 판단되며 최 종판독에서 객관성, 정확성, 판독시간 단축에 유용하게 사용 될 것으로 사료된다.
In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading. Keywords: Fatty Liver, Texture Feature Analysis