도로의 평탄성을 정량화하여 지수로 나타내는 방법은 IRI(International Roughness Index)와 같이 프 로파일을 측정하여 시뮬레이션을 통해 차량거동을 계산하는 방법과 프로파일에 의해 변화하는 주행차량 거동을 센서를 통해 직접 측정하는 두 가지 방향의 접근이 있다. 전자의 경우, 노면형상이 크게 변하지 않 는 한 반복성있는 지수값을 얻을 수 있어 평탄성 유지관리 측면에서 이점이 있으나, 차량거동에 의한 인 체 반응 특성까지는 반영하지 못하기 때문에 정성적인 승차감과는 다소 차이가 있을 수 있다. 반면 센서 측정값을 지수화하는 경우, 승차감 반영 측면에서는 유리하나 타이어, 서스펜션, 중량, 차종 등 주행차량 의 다양한 특성들을 고려해야 하고 정속주행 시 측정해야 하는 등의 어려움이 있어 널리 활용되고 있지는 않다. 하지만 최근 들어 탑승자의 주행쾌적성을 제고하기 위한 포장분야의 관심과 더불어 평탄성 및 승차 감과 관련된 연구들이 수행되고 있다. 이에 본 연구에서는 평탄성지수에 주행쾌적성을 보다 반영하기 위 한 기초 연구자료로 활용하고자, IRI값이 다양하게 분포되어 있는 고속도로 35개 구간을 선정하여 총 31 명 패널의 승차감 평가를 실시하였다. 또한 패널 평가에 사용된 차량에 그림 1과 같이 3개의 3축 가속도 센서를 장착 위치를 달리하여 설치하였으며, 조수석에 사람이 탑승한 상태에서 가속도를 측정하여 승차감 평가 결과와 비교하였다.
진동가속도 기본 분석방법인 시간 도메인에서의 RMS(Root Mean Square)값 분석 결과 0.56~0.83의 상관계수(R2) 분포를 나타냈으며 시트에서 측정한 값이 패널 평가결과와의 상관성이 가장 높은 것으로 분 석되었다. 인체와 진원의 경계부인 시트에서의 가속도 값은 인체 전신진동 평가방법을 기술하고 있는 ISO-2631 기준을 적용할 수 있기 때문에 1/3 Octave 주파수 도메인에서 추가로 진동분석을 수행하였다. 그 결과 그림 2와 같이 가장 높은 상관계수(R2 = 0.85)를 보였으나, 인체에 민감한 영향을 주는 주파수 가중을 실시한 후 오히려 패널과의 상관성이 더 낮아지는 것으로 나타났다. 그 원인은 그림 3에서 보는 바와 같이, 4Hz 이상의 주파수 영역대에서 측정되는 x, y방향 가속도값이 주파수 가중에 의해 약 50~10% 수준으로 크게 감소하기 때문이며, x, y방향의 진동이 패널들의 승차감 평가에 일정부분 반영된 것으로 판단된다. 본 연구를 통해 차량의 회전 거동을 유발하는 x, y방향의 진동영향이 승차감에 미치는 영향을 간접적으로 파악하였고, z방향 거동만을 고려하는 IRI보다 회전 거동을 함께 고려할 수 있는 Full-car 모델을 활용하는 평탄성 지수가 승차감 반영에 더욱 유리하다는 점을 확인하였다.