The C3HC4 zinc RING finger proteins seem to be a family of protein-protein interactions. Little is information regarding the role of the C3HC4 zinc RING finger proteins in rice plant. We have attempted to assess their genome localization, phylogenetic relationship and expression patterns of members via in silico analysis as well as semi-quantitative RT-PCR. A total of 132 genes encoding C3HC4 zinc RING finger proteins appear to be distributed over 12 rice chromosomes, reflecting evolutionary dynamics of the rice genome, e.g. whole genome duplication and tandem duplications. A genome-wide dataset including 155 gene expression omnibus sample (GSM) plates evidenced a high degree of functional specialization of the rice C3HC4 zinc RING finger proteins, especially during developmental stages and against abiotic stresses. We have retrieved co-expression genes with each of the rice C3HC4 zinc RING finger proteins, probably providing some clues on specialized functions of individual genes. Expression patterns of 13 co-expression genes with one gene encoding C3HC4 zinc RING finger protein (Os04g51400) against salt and dehydration stresses were evaluated in crown tissues and leaf tissues, evidencing highly similar patterns among members. These findings might provide clues to shed further light on comprehensive functions of C3HC4 zinc RING finger proteins.