Efficient Supplier Selection with Uncertainty Using Monte Carlo DEA
Selection of efficient supplier is a very important process as risk or uncertainty of a supply chain and its environment are increasing. Previous deterministic DEA and probabilistic DEAs are very limited to handle various types of risk and uncertainty. In this paper, I propose an improved probabilistic DEA which consists of two steps; Monte Carlo simulation and statistical decision making. The simulation results show that the proposed method is proper to distinguish supplier’s performance and provide statistical decision background.