This work focuses on the electrical conduction mechanism in a lead free (Na0.5K0.5NbO3 ; NKN) ceramics system with LiNbO3 content of approximately critical concentration x ≥ 0.2. Lead free (1-x)(Na0.5K0.5)NbO3 - x(LiNbO3), NKN-LNx (x = 0.1, 0.2) ceramics were synthesized by solid-state reaction method. Crystal structures are confirmed by X-ray diffraction. The electric-mechanical bond coefficient k p decreases and the phase transition temperature T c increases with increasing x content, as determined by dielectric and piezoelectric measurements. The value of the real dielectric constants ε' and kBTε'' showed anomalies around T c (462 oC in the NKN-LN0.1 and 500 oC in the NKN-LN0.2). For the ionic conduction of mobile ions, the activation energies are obtained as EI = 1.76 eV (NKN-LN0.1) and EI = 1.55 eV (NKN-LN0.2), above T c, and EII = 0.78 (NKNLN0.1) and EII = 0.81 (NKN-LN0.2) below T c. It is believed that the conduction mechanisms of NKN-LNx ceramics are related to ionic hopping conduction, which may arise mainly due to the jumping of Li+ ions.