현재 국내에서 EM-120에 의해 검측된 틀림 데이터는 매우 불규칙적인 형태를 나타내며 데이터 분석 시 다양한 문제점 을 가지고 있다. 본 연구에서는 궤도의 효율적인 유지관리를 위해 검측된 틀림데이터의 특징과 문제점을 분석하고, 이를 보완할 수 있는 효율적인 처리 기법을 개발하였으며, 정제된 데이터의 ARIMA 분석을 통해 검측데이터와 계절 변화의 상 관관계 분석을 수행하였다. 또한 회귀모형, 지수평활법, ARIMA 모형 등 다양한 예측 모델의 적용을 통해 검측 데이터의 시계열 분석을 수행하고, 궤도 틀림 데이터의 예측 모델에 적합한 최적 모델 선정과 관련한 연구를 수행하였다.
Irregularity data inspected by EM-120, an railway inspection system in Korea includes unavoidable incomplete and erratic information, so it is encountered lots of problem to analyse those data without appropriate pre-data-refining processes. In this research, for the efficient management and maintenance of railway system, characteristics and problems of the detected track irregularity data have been analyzed and efficient processing techniques were developed to solve the problems. The correlation between track irregularity and seasonal changes was conducted based on ARIMA model analysis. Finally, time series analysis was carried out by various forecasting model, such as regression, exponential smoothing and ARIMA model, to determine the appropriate optimal models for forecasting track irregularity progress.