페리다이나믹스 이론과 이진분해 기법의 병렬연산을 이용하여 동적 균열진전 문제에 대한 애조인 형상 설계민감도 해석법을 개발하였다. 페리다이나믹스에서는 균열의 연속적인 분기를 다룰 수 있으며, Explicit 시간적분법을 채택한다. 설계민감도 해석은 애조인 변수법은 경로의존성 문제에는 적합하지 않으나 여기서는 응답해석의 경로를 이미 알고 있으므로 채택하여 사용할 수 있었다. 얻어진 해석적 설계민감도는 유한차분과 비교하여 그 정확성을 검증하였다. 유한차분법은 설계섭동량에 민감하여 비선형성이 강한 페리다이나믹스 문제에서 부정확한 설계민감도를 제시할 수 있다. 정확한 설계민감도 해석을 위해서는 이산화과정에서 C1 연속성을 가지는 체적율이 필요함을 알 수 있었다.
Using the bond-based peridynamics and the parallel computation with binary decomposition, an adjoint shape design sensitivity analysis(DSA) method is developed for the dynamic crack propagation problems. The peridynamics includes the successive branching of cracks and employs the explicit scheme of time integration. The adjoint variable method is generally not suitable for path-dependent problems but employed since the path of response analysis is readily available. The accuracy of analytical design sensitivity is verified by comparing it with the finite difference one. The finite difference method is susceptible to the amount of design perturbations and could result in inaccurate design sensitivity for highly nonlinear peridynamics problems with respect to the design. It turns out that C1-continuous volume fraction is necessary for the accurate evaluation of shape design sensitivity in peridynamic discretization.