In this experimental study, the characteristic of damages on GFRP rebar exposed to high temperature only and immerged in alkaline solution after the exposure to high temperature was analyzed through microscopic image analysis. The found microcrack and pores in resin matrix were quantitatively compared if there was effect of pre-exposure to high temperature. The damages, such as microcrack and pores in resin matrix, by alkali exposure were mainly found in rebar surface. On the other hand, the pores caused by high temperatures were extensively found in a section and had greater width than those caused by the alkali exposure. In results of the quantitative comparison, the accumulated length and widths of microcrack and pores in resin matrix in pre-exposed GFRP rebar to high temperature were respectively 1.5 and 1.4 times of those in the GFRP rebar only immerged in alkali solution. Therefore, the deterioration of resin matrix by the alkali exposure could be accelerated due to the pre-exposure to high temperature.