유전적분형 물성방정식에 근거한 선형 점탄성문제의 효율적인 수치해석을 위해서 새로운 유한요소해법을 공식화하였다. 각 시간구간에서 변수변화를 선형적으로 가정하고 유전적분의 계산을 매우 효율적으로 처리하였다. 그 결과 과거의 해석법에 비하여 수치정확도 및 경제성에서 큰 향상을 얻었다.
An advanced time-domain finite element formulation is presented for the displacement and stress analysis of isotropic, linear viscoelastic problems of a hereditary-type constitutive law. The semidiscrete finite element method with linear time-stepping scheme and an elastic-viscoelastic correspondence principle are used in the theoretical development. An efficient treatment of hereditary integral is introduced to improve the numerical accuracy, to reduce the computation time, and to avoid the use of large memory storage. Two-dimensional numerical examples of plane strain and plane stress are solved under the assumption on the material property of being elastic in dilatation and like three-element Voigt model in distorsion, and compared with the analytical solutions and the past numerical results to show the versatility and efficiency of the proposed method.