不連續갤러킨 方法에 依한 常微分方程式의 有限要素解析
時間燮Jì데 對하여 不連.性을 주 는 時間不連續Galerkin 方높을 有限몇素法으로 解析하였다. 이 方法은 做分方程式觀點에서 지 금 까지 홈素間에 i훌*훌性을 준 -般的有f~.N훌 素法과 다르 게 ff:竟의 時間要素를 選擇, 每時間段階에서 홍칠素t竟界에 不連續을 許諾함으로서 解의 正確性을 높 이고 無條件의 安定을 주는 常微分方 程式의 解法인 것이다.
A time-discontinuous Galerkin method based upon using a finite element formulation in time has evolved. This method, working from the differential equation viewpoint, is different from those which have been generally used. They admit discontinuities with respect to the time variable at each time step. ln particular, the elements can be chosen arbitrarily at each time step with no connection with the elements corresponding to the previous step. lnterpolation functions and weighting functions are taken to be discontinuous across inter-element boundaries. These methods lead to a unconditional stable higher-order accurate ordinary differential equation solver.