Adaptive Analysis and Error Estimation in Meshless Method
본 연구에서는 무요소방법에 적응적 해석기법을 적용하기 위한 부분 및 전체오차의 평가기법을 제안하였다. 본 연구에서 제안한 오차의 평가방법은 무요소방법에서 계산된 응력이 오차가 큰 영역에서 진동한다는 특성을 이용한 것으로 해석결과 얻어진 응력을 낮은 차수의 형상함수로 투사하는 후처리를 함으로써 가상진동모우드를 제거하고 이때 얻어진 투영응력과 원래의 응력을 비교하여 부분오차 및 전체오차를 구할 수 있다. 1차원 및 2차원 예제해석을 통하여 투영응력을 구할 때 가능한 한 작은 영향영역을 사용하는 것이 바람직하다는 것을 보였으며 이는 영향영역의 크기를 과도하게 설정할 경우 투영응력을 과대 평가할 수 있기 때문이다. 본 연구에서 제안한 오차의 평가기법은 다른 무요소 방법에 적용될 수 있다.
In this paper, local and global error estimates for the element-free Galerkin (EFG) method are proposed. The essence of proposed error estimates is to use the difference between the values of the projected stress and these given directly by the EFG solution. The stress projection can be obtained simply by taking product of shape function based on a different domain of influence with the stresses at nodes. In this study, it was found that the effectivity index is optimized if the domain of influence in stress projection procedure is the smallest that retains regularity of the matrices in EFG. Numerical tests are shown for various 1D and 2D examples illustrating the good effectiveness of the proposed error estimator in the global energy norm and in the local error estimates.