판 논문은 구조뭄의 동역학 및 열단성 연성문제 해석을 위 한 통합된 유한요소법을 개 발하논데 초접을 누고 있다. 첫 째로. 열전도 방정식이l 열변위라는 묵리량을 도엽하여 풍역학의 운동 빙정식파 유사하도록 유도한 후. 변분법과 일반좌표계를 이용하여 시간영역에서 정식화하였다 둘째포, 두 뱅정식어] 라블라스 변 판을 동시에 도 입하고 - 공간변수안을 갖는 형성함수짜 가증잔여번을 적용하여 유한요소식을 변환영역에서 표 헌 하였다. 연성된 빙정 식 을 운지l 의 특성에 따라서 분류하였고 정식화 파정을 검숭하였다 또한 수치해석 알고리 늠 이 갖는 수치 역 변환의 정성적인 경향에 대하여 검토하였다-
This paper is for the first essential study on the development of unified finite element formulations for solving problems related to the dynamics/thermoelastics behavior of solids. 1n the first paπ of fOI111Ulations, the finite element method is based on the int:roduction of a new quantity defin어 as heat displacement. which allows the heat conduction equations to be 、;vTitten in a form equivaJent to the equation of motion. and the equations of coupled thermoelasticity to be written in a unified form. The equations obtajned are used to express a vmiational formulation which. together with the concept of generalized coordinates, yields a set of differentiaJ equations with the time as an independent val띠)le Using the LapJace transfonn. the resuJting finite eJement equations aJ.‘e described in the tranSf0l111 dom며n. In the second. the Laplace transform is applied to both the equation of heat conduction derived in the first pm1 and the equations of motions and their corresponding boundmγ conditions, 、;v'hi ch is refelTed to the tra.nsformed equation. SeJections of intell)oJation functions dependent on only the space variable and an application of the weighted residuaJ method to the coupled equation result in the necessa.ry fi 띠te eJement matrices in the transformed domain. Fin며 l y. to 11rove the validity of two approaches. a compmison with one finite eJement equation and the other is made tenn by teml.