본 논문은 구조물의 미시적 측면에서 유효평균탄성계수를 결정하기 위한 균질화기법인 점근적 방법을 적용하였고, 탄성값을 조사하기 위하여 유한요소법으로 정식화하였다. 수치 예로서 물성치가 각기 다른 등방성 재료를 적층한 부재의 임의 단면에서 단위요소를 해석영역으로 설정하고 산출된 탄성계수를 기존의 해석방법으로부터 산출된 값과 비교하였다. 균질화기법으로 산출된 탄성계수는 과소평가되어 나타나며, 이는 해석영역을 유한요소정식화하는 과정에서 수정항만큼 차이가 난다는 것을 증명하였다. 기존 해석방법으로는 복합재료의 탄성계수가 단순히 재료의 산술적 평균값으로 계산되는 것과는 달리, 미시적으로 복합재 단위요소의 반복성을 고려함으로써 제안된 해석방법이 보다 유용하다는 것을 보여 주었다.
This paper discusses the homogenization method to determine effective average elastic constants of a linear structure by considering its microstructure. A detailed description on the homogenization method is given for the linear elastic material and then the finite element approximation is performed for an investigation of elastic properties. An asymptotic expansion is carried out in the cross- section area, or in the unit cell. Two and three lay - up structures made up of individual isotropic constituents are chosen for numerical exarnples to check discrepancies between results generated by this theoretical development and the conventional approach. Asymptotic characteristics of the process in extracting the stiffness of structure locally formed by spatial repetitions yield underestimated values of stiffness These discrepancies are detected by the asymptotic corrective term which is ascribed to considerations of microscopic perturbations and proved in the finite element formulation. The asymptotic analysis is the more reasonable in analysing the composite material, rather than the conventional approach to calculate the macroscopic average for elastic properties.