본 연구는 유한한 회전의 2차항을 고려한 변위장에 기초하여 변곡률을 가지는 비대칭 박벽곡선보의 해석이론을 제시한다. Vlasov의 가정에 의한 연속체의 선형화된 가상일의 원리로부터 총 포텐셜 에너지를 유도하고, 모든 변위 파라미터와 함수는 도심에서 정의된다. 절점당 8개의 자유도를 가지는 박벽곡선보 요소의 개발 과정에서 3차 Hermitian 다항식이 형상함수로 이용된다. 본 연구의 타당성과 정확도를 입증하기 위하여, 일축대칭 단면을 갖는 포물선과 타원형상의 곡선보를 선택하여 3차원 자유진동해석과 안정성 해석을 수행한다. 그리고 이 결과를 ABAQUS의 쉘 요소에 의한 것과 비교한다.
An improved formulation of thin-wailed curved beams with variable curvatures based on displacement field considering the second order terms of finite semitangential rotations is presented. From linearized virtual work principle by Vlasov's assumptions, the total potential energy is derived and all displacement parameters and the warping functions are defined at cendtroid axis. In developing the thin-walled curved beam element having eight degrees of freedom per a node, the cubic Hermitian polynomials are used as shape functions. In order to verify the accuracy and practical usefulness of this study, free vibrations and buckling analyses of parabolic and elliptic arche shapes with mono-symmetric sections are carried out and compared with the results analyzed by ABAQUS' shell element.