확률론적 구조설계 최적화는 구조물의 역학적 특성이나 하중의 불확실성이나 임의성과 같은 변동성을 정량적이고 합리적으로 고려할 수 있다는 점에서 기존의 전통적인 확정론적 최적화와 비교된다. 확률론적 최적화의 방법론으로는 개선된 일계이차모멘트법을 이용하는 신뢰도지수에 기반한 접근법(MPFP search)이 널리 알려져 있으며, 최근 목표성능치에 기반한 접근법(MPTP search)이 새롭게 제안되었다. 본 논문에서는 이들 두 가지 접근법에 대한 정식화를 수행하고, 특히 탐색과정에서 소모적인 반복계산을 발견하고 제거하는 알고리즘을 제시하였다. 예제에서 두 접근법에 의한 확률론적 최적화를 수행하고 구조설계 최적화의 관점에서 두 접근법의 장단점을 비교검토하였다.
Probabilistic structural design optimization which is characterized to have the so-called probabilistic constraints is preferred to deterministic design optimization because inherent randomness and uncertainties in structural and environmental properties are to be taken into account in quantitative and rational way. In this paper, the well- known reliability index based approach, that is, the MPFP search, and the newly introduced target performance based approach, that is, the MPTP search, are formulated. Additionally an algorithm which detects and eliminates exhaustive iterations is presented. Two approaches are applied for some application examples and their characte- ristics are compared in view of structural design optimization.