본 연구에서는 유한요소법을 이용한 채널단면을 갖는 복합재료 적층 구조물의 자유진동을 다룬다. 복합적층 절판구조물에 고차항 판이론을 적용하기 위하여 개발된 유한요소 프로그램은 Lagrangian 및 Hermite 보간함수를 병용하여 면내회전각 자유도를 포함한 절점 당 8개의 자유도를 갖는다. 전단보정계수의 가정을 필요로 하지 않고 전단변형의 3차항 비선형 특성이 고려된 본 논문의 절판 요소는 국부좌표계와 전체좌표계에 대한 좌표변환행렬에 의하여 요소 당 32의 국부요소행렬로 구성된다. 본 해석 프로그램의 결과는 기존의 고전적 이론 및 일차항 이론에 의한 문헌 결과와 비교ㆍ분석하였으며, 화이버 보강각도, 길이-두께비, 기하학적 형상 변화 등의 다양한 매개변수 연구를 수행하였다. 본 연구에서는 특히 경계조건 및 길이-두께비 변화에 따라 예측하기 힘든 복잡한 거동을 보이는 복합적층 채널단면 구조물의 자유진동에 대하여 정밀한 고차항 이론 적용에 의한 엄밀 해석의 필요성을 제기하였다.
This study deals with free vibrations of laminated composite structures with a channel section using finite element method. In this paper, the mixed finite element method using Lagrangian and Hermite interpolation functions is adopted and a high-order plate theory is used to analyze laminated composite non-prismatic folded plates with a channel section more accurately for free vibration. The theory accounts for parabolic distribution of the transverse shear stress and requires no shear correction factors supposed in the first-order plate theory. An 3232 matrix is assembled to transform the system element matrices from the local to global coordinates using a coordinate transformation matrix, in which an eighth drilling degree of freedom (DOF) per node is appended to the existing 7-DOF system. The results in this study are compared with those of available literatures for the conventional and first-order plate theory. Sample studies are carried out for various layup configurations and length-thickness ratio, and geometric shapes of plates. The significance of the high-order plate theory in analyzing complex composite structures with a channel section is enunciated in this paper.