Probabilistic Behavior of In-plane Structure due to Multiple Correlated Uncertain Material Constants
구조응답에 기여하는 중요성으로 인하여 추계론적 해석에서는 재료탄성계수의 불확실성에 의한 응답변화도에 대한 연구가 주로 진행되어 왔다. 그러나 추계론적 해석이 의미있는 값을 제공하기 위해서는 가능한 많은 인수에 대한 불확실성을 동시에 고려하여야 한다. 본 연구에서는 구조재료의 중요한 두 인수인 탄성계수와 포아송비에 나타나는 불확실성을 고려한 추계론적 해석을 위한 정식화를 평면문제에 대하여 제안하였다. 이를 위하여 이들 두 인수의 함수로 주어지는 구성행렬의 각 요소에 대한 다항식 전개를 채용하였으며, 두 인수의 불확실성에 따라 나타나는 자기 및 상호상관함수는 n-차 모멘트에 대한 일반식을 적용하여 구성하였다. 다항식 전개에 따라 부행렬의 무한합으로 변형된 구성행렬은 계산상의 편의를 위하여 요구되는 정확도 내에서 절삭하여 사용하였다. 제안된 방법의 검증을 위하여 단순 평면구조를 예제로 택하여 해석하었으며, 해석결과는 국부평균법을 채용한 고전적인 몬테카를 해석 결과와 비교하였다.
Due to the importance of the parameter in structural response, the uncertain elastic modulus was located at the center of stochastic analysis, where the response variability caused by the uncertain system parameters is pursued. However when we analyze the so-called stochastic systems, as many parameters as possible must be included in the analysis if we want to obtain the response variability that can reach a true one, even in an approximate sense. In this paper, a formulation to determine the statistical behavior of in-plane structures due to multiple uncertain material parameters, i.e., elastic modulus and Poisson's ratio, is suggested. To this end, the polynomial expansion on the coefficients of constitutive matrix is employed. In constructing the modified auto-and cross-correlation functions, use is made of the general equation for n-th moment. For the computational purpose, the infinite series of stochastic sub-stiffness matrices is truncated preserving required accuracy. To demons4rate the validity of the proposed formulation, an exemplary example is analyzed and the results are compared with those obtained by means of classical Monte Carlo simulation, which is based on the local averaging scheme.