이 논문은 일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중에 관한 연구이다. 기둥의 변단면을 중실 직사각형 단면을 갖는 선형 변단면으로 채택하고, Bernoulli-Euler보 이론을 이용하여 경사종동력이 작용하는 소위 Beck 기둥의 자유진동을 지배하는 상미분방정식과 경계조건을 유도하였다. 이 미분방정식을 수치해석하여 하중-고유진동수 곡선을 얻고 이로부터 발산임계하중 및 동요임계하중을 산출하였다. 수치해석의 결과로부터 변단면 형태, 경사변수 및 스프링 강성이 임계하중에 미치는 영향을 고찰하였다
This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.