논문 상세보기

파진행 문제를 위한 Paraxial 경계조건의 유한요소해석 KCI 등재

Finite Element Analysis with Paraxial Boundary Condition

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/324428
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

무한영역에서 진행하는 탄성파를 유한영역에서 수치적으로 해석하기 위해 많은 흡수경계조건들이 제안되어져 왔다. Paraxial 경계조건은 흡수경계조건의 하나로서 스칼라 및 탄성파 방정식의 paraxial 근사화를 통해 얻어지며, 그 성능이 우수하고 수치해석시 계산적 부담을 주지 않는다. 그러나 경계조건이 복잡한 편미분 방정식으로 표현되어 있어 유한요소해석으로의 적용이 어렵다. 본 논문에서는 penalty function method를 이용하여 전체 에너지 범함수와 paraxial 경계조건을 함께 변분정식화 함으로써 유한요소해석을 수행하였다. 유한요소해석에 가장 적용이 용이하며, 많이 사용되어지는 Lysmer-Kuhlemeyer의 흡수경계조건과 성능을 비교함으로써 연구결과의 타당성을 입증하였다.

For the propagation of elastic waves in unbounded domains, absorbing boundary conditions at the fictitious numerical boundaries have been proposed. In this paper we focus on both first and second order paraxial boundary conditions(PBCs) in the framework of variational approximations which are based on paraxial approximations of the scalar and elastic wave equations. We propose a penalty function method for the treatment of PBCs and apply these into finite element analysis. The numerical verification of the efficiency is carried out through comparing PBCs with Lysmer-Kuhlemeyer's boundary conditions.

저자
  • 김희석(한양대학교 토목공학과 박사과정) | Kim, Hee-Seok
  • 이종세(한양대학교 토목공학과 교수) | Lee, Jong-She