논문 상세보기

다중 불확실 인수를 고려한 평판의 응답변화도 산정 정식화 KCI 등재

A Formulation for Response Variability of Plates Considering Multiple Random Parameters

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/324481
구독 기관 인증 시 무료 이용이 가능합니다. 4,200원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

본 논문에서는 구조의 재료물성치와 기하학적 인수의 공간적 불확실성에 의한 구조 응답변화도 산정을 위한 정식화를 제안하였다. 정식화는 추계론적 유한요소해석의 해석법 중의 하나인 가중적분법을 기본으로 하였다. 해석 대상 구조는 전단변형을 포함하는 평판구조로서, 평판구조에 나타날 수 있는 불확실 인수로는 재료적 측면에서는 재료탄성계수와 포아송비가 있으며, 기하학적 인수로는 평판의 두께를 들 수 있다. 선형탄성 영역에서 선형성을 나타내는 재료탄성계수와는 달리 평판의 두께는 3차함수로 강성에 기여하고, 포아송비의 경우 분수의 형태로 강성에 기여하므로 직접적으로는 이를 추계론적 해석에 고려할 수 없다. 따라서 본 연구에서는 적합행렬내의 포아송비를 Taylor전개하여 사용하였다. 제안된 정식화에 의한 결과는 기존 연구결과는 물론 몬테카를로 해석에 의한 결과와도 비교하여 제안한 정식화를 검증하였다.

In this paper, we propose a stochastic finite element formulation which takes into account the randonmess in the material and geometrical parameters. The formulation is proposed for plate structures, and is based on the weighted integral approach. Contrary to the case of elastic modulus, plate thickness contributes to the stiffness as a third-order function. Furthermore, Poisson's ratio is even more complex since this parameter appears in the constitutive relations in the fraction form. Accordingly, we employ Taylor's expansion to derive decomposed stochastic field functions in ascending order. In order to verify the proposed formulation, the results obtained using the proposed scheme are compared with those in the literature and those of Monte Carlo analysis as well.

저자
  • 노혁천(세종대학교 토목환경공학과 교수) | Noh, Hyuk-Chun