Response Variability of Laminated Composite Plates with Random Elastic Modulus
본 연구에서는 역학적 특성이 우수하여 다양한 구조에 적용되고 있는 복합적층판에 대한 추계론적 유한요소해석 정식화를 제안한다. 정식화의 제시는 추계론적 수치해석기법 중 그 정확도가 매우 높은 것으로 알려져 있는 가중적분법에 기초하였다. 공간적 불확실성을 가지는 인수로는 두 재료축에 대한 탄성계수와 면내 전단탄성계수가 고려되었다. 이들 재료인수들은 독립적인 추계장함수로 모델링 되었으며, 이들 추계장이 구조거동에 미치는 영향은 지수함수형태의 자기 및 상호상관함수를 적용하여 산정하였다. 수치예제를 통하여 복합적층판이 등방성 및 이방성의 재료에 의한 판 구조에 비하여 거동의 변동계수가 낮음을 보여주었으며, 제안된 해석법의 검증을 위하여 몬테카를로 해석을 동시에 수행하고 그 결과를 상호 비교하였다.
In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.