Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique
감마나이프 방사선수술(GKRS)의 높은 정밀도와 정확성은 치료 성공을 위한 기본 요건이다. 방사선의 급격한 감소와 함께 정교한 방사선 전달 및 선량 기울기가 임상적으로 적용되어야 하므로 방사선량 측정 및 기하학적 정확성을 보장하고 감마나이프 방사선수술에서 발생할 수 있는 모든 위험 요인을 줄이기 위해서는 전용 정도관리(QA) 프로그램이 필요하다. 본 연구에서는 독립적인 검증 프로그램 가변 타원체 모형화기술(Variable Ellipsoid Modeling Technique: VEMT)을 적용해서 감마나이프 치료계획 시스템 렉셀 감마플랜의 알고리즘에 사용된 단일 샷 선량 분포의 정확성을 검증하였다. 감마나이프 퍼펙션(PFX)에 장착한 직경 160 mm의 구형 ABC 팬텀에 조사한 단일 샷의 선량 분포를 평가했다. 단일 샷의 조사는 ABC 팬텀의 중심으로 향하게 하여 x, y 및 z 축을 따라 4, 8 및 16 mm 크기의 시준기 배치가 고려되었다. 감마나이프 방사선수술에서 사용되는 감마나이프 퍼펙션 치료계획 시스템은 렉셀 감마플랜(LGP) 버전 10.1.1이 사용되었다. VEMT의 검증을 통해서 감마나이프 방사선수술의 정확성은 배가 될 것이다. 그래서 VEMT 검증 후 감마나이프 방사선수술의 정확성과 정밀성을 토대로 임상 적용이 최종적으로 수행되어야 한다. 특히 환자의 머리가 직경 160mm의 구형으로 시뮬레이션된 조건에서 50% 등선량 높이 수준의 너비, 즉 최대반값폭(FWHM)이 검토되었다. VEMT를 통해 예측된 x, y, z 축의 선량 분포에 관한 모든 데이터는 4 mm 및 8 mm 시준기 배치에 대해 z 축을 따라 최대반값폭과 반그늘(PENUMBRA)의 약간의 차이점을 제외하고는 사양 내(등선량 50%에서 1 mm 이내)에서 LGP의 선량 분포와 훌륭하게 일치했다. 최대반값폭의 최대 불일치는 모든 시준기 배치에서 2.3% 미만이었다. 반그늘의 최대 불일치는 z 축을 따라 8 mm 시준기에 대해서 0.07 mm로 주어졌다. VEMT와 LGP로 얻은 선량 분포에서 최대반값폭과 반그늘의 차이는 감마나이프 방사선수술에서 임상적 유의성을 부여하기에는 너무 작았다. 이 연구의 결과는 전 세계 감마나이프 방사선수술에 관련된 의학물리학자를 위한 참고 자료로 활용될 수 있으리라 사료된다. 따라서 우리는 LGP의 결과물에 대한 독립적인 검증방법 VEMT를 포함하는 정기 예방정비 프로그램을 통해 결정된 모든 시준기 배치에 대한 선량 분포의 유효성을 확인하고 감마나이프 방사선수술 환자에게 임상적으로 완벽한 치료를 보장할 수 있다. 그래서 VEMT의 활용은 시스템을 안전하게 검증하고 운영할 수 있는 정도관리의 한 부분이 될 것으로 기대한다.
A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(≤1mm at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.