본 연구에서는 임진강 상류유역과 같이 수리수문학적 분석에 필요한 측정데이터가 존재하지 않거나 혹은 데이터의 확보가 어려운 유역에 대하여 위성 데이터와 데이터 기반 모형을 활용하여 유출량을 산정하였다. SDF 시그널(Satellite-derived Flow Signal)은 하도내의 유량변화에 따른 하천 폭의 변화를 반영할 수 있다고 알려져 있으며, 그 상관관계는 하도단면의 형태와 밀접한 관계가 있다. SDF 시그널 데이터와 유출량 간의 비선형 상 관관계를 반영할 수 있는 인공신경망 모형을 활용하여, 모형의 입력변수인 SDF 시그널 데이터로부터 임진강의 임진교 지점에서의 유출량을 추정 하였다. 15개의 위성 이미지 픽셀의 SDF 시그널 값이 0~10일의 lag가 되어 활용되었으며, lag된 데이터를 포함하여 총 150개의 변수 중 유출량 과 가장 큰 관계가 있는 변수 선정을 위해 PMI(Partial Mutual Information) 기법이 활용되었다. 인공신경망 모형을 통해 산정된 유출량은 임진교 에서 측정된 지점 유출량과 비교·분석되었으며, 학습(training)과 검증(validation)을 통한 상관계수는 각각 0.86, 0.72로 좋은 결과를 보여주었 다. 추가적으로 SDF 시그널 데이터 외에 임진교의 1일 전 측정유량이 인공신경망 입력변수로 추가되었을 때 상관계수가 0.90, 0.83으로 증가함을 보였다. 결과로부터 계측수문자료가 부족하거나 접근 불가능한 유역에 대하여 하천 유량 변화에 대한 추정치인 SDF 시그널 데이터와 지상 데이터 가 결합되었을 때 신뢰성 높은 유역의 유출량을 산정할 수 있으며, 큰 유량이 발생하는 홍수사상에 대해서도 첨두 유량과 첨두 발생시간을 잘 모의 할 수 있음을 알 수 있었다. 향후 위성 데이터와 지점 데이터를 활용하여 미계측 유역의 홍수발생에 대하여 높은 정확도로 예측 가능할 것으로 기대 한다.
In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.