논문 상세보기

확장하는 Scale-free 네트워크에서의 허브노드 도출을 위한 Stochastic Community Bridge Node Finder 개발 KCI 등재

Development of Modeling to Find the Hub Nodes on Growing Scale-free Network based on Stochastic Community Bridge Node Finder

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/327962
서비스가 종료되어 열람이 제한될 수 있습니다.
농촌계획 (Journal of Korean Society of Rural Planning)
한국농촌계획학회 (Korean Society Of Rural Planning)
초록

네트워크를 분석하는 방법인 stochastic 기반의 community bridge node finder는 네트워크 구조의 일부 정보만을 이용하여 중심지 및 확산 경로의 유추가 가능하다. 그러나, heterogeneity 네트워크에 적용하기 어려운 단점을 보유하고 있어, 본 연구에서는 이를 개선하고자 하였다. heterogeneity 네트워크에 적용할 수 있는 community bridge node finder 방법을 개발하기 위해 네트워크의 modularity를 계측하는 방법을 적용하였으며, 개선된 방법을 통해 community bridge node를 정량적으로 평가할 수 있어 heterogeneity 네트워크의 분석이 가능하였다. 농촌계획분야 정보의 경우, 대부분 자료의 불확실성이 존재하며 무 결성이 떨어지는 특성을 가지고 있는 바 본 연구에서 적용한 전염병 확산 예측 뿐만 아니라 개선된 방법을 활용할 경우 주 산지 정비 거점 분석 등 다양한 형태로 이용될 수 있을 것으로 기대된다.

The community bridge node finder, based on the stochastic method of network analysis, can compute hubs spot, which would enable the use of network structures with limited information. However, applying this node finder to heterogeneity networks, which are efficient to analyze the main farm complex in fields and the spread of infectious disease, is difficult. These problems, The most connected point that is called hub is often a major role in the heterogeneity network. In this study, we therefore improved the community bridge node finder to enable it to be applied to heterogeneity networks. We attempted to calculate the bridge node quantitatively by using the modularity of cohesion analysis method and the community bridge node finder. Application of the improved method to the HPAI(Highly Pathogenic Avian Influenza) spread in Korea 2008 produced a quarantine coefficient that was 4 – 37% higher than the quarantine coefficient obtained with the centrality method for the first 14 days after the HPAI outbreak. We concluded that the improved method has the ability to successfully calculate the bridge node in heterogeneity networks based on network structures with scant information, such as those describing the spread of infectious disease in domestic animals. And Our method should be capable to find main farm complex in fields.

저자
  • 은상규(서울대학교 그린바이오과학기술연구원, 충남대학교 농업생명과학대학) | Sang-Kyu Eun (Institute of Green Bio Science and Technology, Seoul National University, Department of Agricultural Engineering, Chungnam National University)
  • 김수진(서울대학교 그린바이오과학기술연구원, 충남대학교 농업생명과학대학) | Soo-Jin Kim (Institute of Green Bio Science and Technology, Seoul National University, Department of Agricultural Engineering, Chungnam National University)
  • 배승종(서울대학교 그린바이오과학기술연구원, 충남대학교 농업생명과학대학) | Seung-Jong Bae (Institute of Green Bio Science and Technology, Seoul National University, Department of Agricultural Engineering, Chungnam National University)
  • 김대식(서울대학교 그린바이오과학기술연구원, 충남대학교 농업생명과학대학) | Dae-Sik Kim (Institute of Green Bio Science and Technology, Seoul National University, Department of Agricultural Engineering, Chungnam National University)