Raw and secondary waste materials from recycling products have been used to produce cements. A total of 10 cements produced from recycling products were analyzed for chemical composition, such as Na2O, MgO, Al2O3, SiO2, SO3, Cl, K2O, CaO, TiO2, Cr2O3, MnO, Fe2O3, CuO, ZnO, and PbO, using the Korean standard leaching test. The total content of toxic substances, such as Pb, Cd, Cu, As, Hg, and Cr(VI), present in each cement was also measured. The corrosion characteristics of cement leachates were also determined by measuring their pH values using an ion selective electrode and measuring the corrosion rate of a circular steel plate in each leachate. The chemical composition of the cements was found to be 60-67% CaO, 18-23% SiO2, and 5-6% Al2O3. Based on the results of the leaching tests, the samples did not exceed the prescribed regulatory leaching levels. The total content of toxic substances in each cement did not exceed the voluntary agreement criteria of 20 mg/kg. In the case of the corrosion characteristics of the cement leachates, the pH of each leachate was greater than 12.5 and the corrosion rate of a circular steel plate in each leachate did not exceed 6.35 mm/yr. The correlation between pH and the corrosion rate of steel in the solid waste leachates was difficult to determine.