논문 상세보기

인공 신경망을 이용한 채소 단수 예측 모형 개발 : 고추를 중심으로 KCI 등재

Development of Yield Forecast Models for Vegetables Using Artificial Neural Networks: the Case of Chilli Pepper

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/330269
서비스가 종료되어 열람이 제한될 수 있습니다.
한국유기농업학회지 (Korea Journal of Organic Agriculture)
한국유기농업학회 (Korea Association Of Organic Agriculture)
초록

This study suggests the yield forecast model for chilli pepper using artificial neural network. For this, we select the most suitable network models for chilli pepper’s yield and compare the predictive power with adaptive expectation model and panel model. The results show that the predictive power of artificial neural network with 5 weather input variables (temperature, precipitation, temperature range, humidity, sunshine amount) is higher than the alternative models. Implications for forecasting of yields are suggested at the end of this study.

저자
  • 이춘수(단국대학교 환경자원경제학과 강사) | Lee, Choon-Soo
  • 양성범(단국대학교 환경자원경제학과 조교수) | Yang, Sung-Bum Corresponding author