논문에서는 머신비전을 이용하여 컨베이어 시스템에서 이동하는 객체를 계수하는 알고리즘을 제안하였다. 영상처리를 이용한 객체 계수 시스템은 유동인구나 교통량 파악 등의 다양한 산업현장에서 사용되고 있으며, 주로 템플릿 매칭이나 기계학습의 방 법으로 검출하여 추적 후 계수한다. 하지만 빠르게 움직이는 컨베이어 벨트위의 물체를 검출하기 위해서는 연산에 소요되는 시간이 짧 아야 하므로 영역기반의 방법으로 영상처리를 하였다. 본 연구에서는 모양과 크기, 그리고 색깔이 비슷한 전복 치패를 계수하였다. 컨 베이어 시스템은 한 방향으로 동작하는 특성을 이용하여 첫 번째 영역에서 치패를 검출하여 정보를 얻은 것을 기반으로 다음 프레임 에서의 물체의 위치 범위를 계속적으로 변화하여 치패를 검출하고 각각의 획득한 정보를 비교하여 계수하였다. 치패가 간격을 두고 이 동 시에는 정확하게 계수됨을 확인하였으며, 치패가 붙어서 오는 경우에는 크기정보를 이용하여 계수하여 중복되거나 누락됨을 방지 하였다. 본 논문에서 제안한 알고리즘은 컨베이어 시스템 위에서 움직이는 다양한 객체 계수 제어에 적용할 수 있을 것이다.
In this paper, an algorithm for object counting via a conveyor system using machine vision is suggested. Object counting systems using image processing have been applied in a variety of industries for such purposes as measuring floating populations and traffic volume, etc. The methods of object counting mainly used involve template matching and machine learning for detecting and tracking. However, operational time for these methods should be short for detecting objects on quickly moving conveyor belts. To provide this characteristic, this algorithm for image processing is a region-based method. In this experiment, we counted young abalone shells that are similar in shape, size and color. We applied a characteristic conveyor system that operated in one direction. It obtained information on objects in the region of interest by comparing a second frame that continuously changed according to the information obtained with reference to objects in the first region. Objects were counted if the information between the first and second images matched. This count was exact when young shells were evenly spaced without overlap and missed objects were calculated using size information when objects moved without extra space. The proposed algorithm can be applied for various object counting controls on conveyor systems.