논문 상세보기

베이지안 기법 기반의 댐 예측유입량 산정기법 개발 및 평가 KCI 등재

Development and evaluation of dam inflow prediction method based on Bayesian method

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/331004
서비스가 종료되어 열람이 제한될 수 있습니다.
한국수자원학회 논문집 (Journal of Korea Water Resources Association)
한국수자원학회 (Korea Water Resources Association)
초록

본 연구에서는 충주댐 유역에 대해 다목적 댐 예측유입량 산정기법 BAYES-ESP를 개발하고 평가하였다. BAYES-ESP 기법은 기존 ESP (Ensemble Streamflow Prediction) 기법에 베이지안 이론을 적용하여 개발하였으며, 수문모델은 ABCD를 활용하였다. 입력자료는 기온, 강수량 자료와 댐 관측유입량 자료를 활용하였으며, 기온 및 강수량은 기상청, 국토교통부, 한국수자원공사의 지점관측자료, 댐 관측유입량은 한국수자원공사의 자 료를 이용하였다. 적용성 평가방법은 시계열 분석과 Skill Score를 활용하였으며, 평가기간은 1986~2015년이다. 시계열 분석 결과 ESP 댐 예측 유입량(ESP)는 매년 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. BAYES-ESP 댐 예측유입량(BAYESESP) 는 ESP가 관측유입량에 비해 과소모의하는 경향을 보정하였으며, 특히 다우년에 개선효과가 있는 것으로 나타났다. 월별 평균 댐 관측유입량 과의 Skill Score 비교분석결과 ESP는 1~3월에 SS가 비교적 높은 값을 보였으며, 나머지 월에는 음의 값을 나타내었다. BAYES-ESP는 ESP와 관측 값 간의 선형적 관계를 갖는 1~3월에 ESP의 정확도를 향상시키는 것으로 나타났다. ESP 기법은 국내 강수특성상 우리나라에 적용하기에는 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측연구에 가치가 있다고 판단된다.

The objective of this study is to propose and evaluate the BAYES-ESP, which is a dam inflow prediction method based on Ensemble Streamflow Prediction method (ESP) and Bayesian theory. ABCD rainfall-runoff model was used to predict monthly dam inflow. Monthly meteorological data collected from KMA, MOLIT and K-water and dam inflow data collected from K-water were used for the model calibration and verification. To estimate the performance of ABCD model, ESP and BAYES-ESP method, time series analysis and skill score (SS) during 1986~2015 were used. In time series analysis monthly ESP dam inflow prediction values were nearly similar for every years, particularly less accurate in wet and dry years. The proposed BAYES-ESP improved the performance of ESP, especially in wet year. The SS was used for quantitative analysis of monthly mean of observed dam inflows, predicted values from ESP and BAYES-ESP. The results indicated that the SS values of ESP were relatively high in January, February and March but negative values in the other months. It also showed that the BAYES-ESP improved ESP when the values from ESP and observation have a relatively apparent linear relationship. We concluded that the existing ESP method has a limitation to predict dam inflow in Korea due to the seasonality of precipitation pattern and the proposed BAYES-ESP is meaningful for improving dam inflow prediction accuracy of ESP.

저자
  • 김선호(세종대학교 건설환경공학과) | Kim, Seon-Ho (Department of Civil & Environmental Engineering, Sejong University)
  • 소재민(세종대학교 건설환경공학과) | So, Jae-Min (Department of Civil & Environmental Engineering, Sejong University)
  • 강신욱(한국수자원공사 국가가뭄정보분석센터) | Kang, Shin-Uk (National Drought Information Analysis Center, Korea Water Resources Cooperation)
  • 배덕효(세종대학교 건설환경공학과) | Bae, Deg-Hyo (Department of Civil & Environmental Engineering, Sejong University) Corresponding author