Twenty apple germplasm accessions from the Korean Genebank were successfully cryopreserved using two-step freezing to back up genetic resources maintained by field collections. This study examined the morphological and genetic stability of cryopreserved dormant apple buds that were stored in liquid nitrogen, and then rewarmed and regrown. Whole plants were regenerated directly from dormant buds through budding without an intermediary callus phase. The cryopreserved buds produced high levels of shoot formation (76.2-100%), similar to those of noncryopreserved buds (91.3-100%), with no observed differences between cryopreserved and noncryopreserved materials. Three of the twenty cryopreserved apple germplasm accessions were used to assess morphological and genetic stability. No differences in morphological characteristics including shoot length, leaf shape, leaf width/length ratio, and root length were observed between controls (fresh control and noncryopreserved) and cryopreserved plantlets. The genetic stability of regenerants (before and after cryopreservation) was investigated using inter simple sequence repeat (ISSR) markers. The ISSR markers produced 253 bands using four primers, ISSR 810, SSR 835, ISSR 864, and ISSR 899. These markers showed monomorphic banding patterns and revealed no polymorphism between the mother plant and regenerants before and after cryopreservation, suggesting that cryopreservation using two-step freezing does not affect the genetic stability of apple germplasm. These results show that two-step freezing cryopreservation is a practical method for long-term storage of apple germplasms.