경로 탐색 알고리즘은 이동 가능한 에이전트가 게임 내의 가상 월드에서 현재 위치로부터 목적지까지 가는 경로를 탐색하는 알고리즘을 뜻한다. 기존의 경로 탐색 알고리즘은 A*, Dijkstra와 같이 비용 기반으로 그래프 탐색을 수행한다. A*와 Dijkstra는 월드 맵에서 이동 가능한 노드와 에지 정보들을 필요로 해서 맵의 정보가 다양하고 많은 온라인 게임에 적용하기 힘들다. 본 논문에서는 가변환경이나 맵의 데이터가 방대한 게임에서 적용 가능한 경로 탐색 알고리즘을 개발하기 위해 맵의 정보 없이 교배, 교차, 돌연변이, 진화 연산을 통해 해를 찾는 유전 알고리즘(Genetic Algorithm, GA)을 활용한 Heuristic-based Genetic Algorithm Path–finding(HGAP)를 제안한다. 제안하는 알고리즘은 Binary-Coded Genetic Algorithm을 기반으로 하며 목적지에 더 빨리 도달하기 위해 목적지로 가는 경로를 추정하는 휴리스틱 연산을 수행하여 경로를 탐색한다.
The path-finding algorithm refers to an algorithm for navigating the route order from the current position to the destination in a virtual world in a game. The conventional path-finding algorithm performs graph search based on cost such as A-Star and Dijkstra. A-Star and Dijkstra require movable node and edge data in the world map, so it is difficult to apply online games with lots of map data. In this paper, we provide a Heuristic-based Genetic Algorithm Path-finding(HGAP) using Genetic Algorithm(GA). Genetic Algorithm is a path-finding algorithm applicable to game with variable environment and lots of map data. It seek solutions through mating, crossing, mutation and evolutionary operations without the map data. The proposed algorithm is based on Binary-Coded Genetic Algorithm and searches for a path by performing a heuristic operation that estimates a path to a destination to arrive at a destination more quickly.