Collaborative filtering, one of the most widely used techniques to build recommender systems, is based on the idea that users with similar preferences can help one another find useful items. Credit card user behavior analytics show that most customers hold three or less credit cards without duplicates. This behavior is one of the most influential factors to data sparsity. The ‘cold-start’ problem caused by data sparsity prevents recommender system from providing recommendation properly in the personalized credit card recommendation scenario. We propose a personalized credit card recommender system to address the cold-start problem, using multiple user profiles. The proposed system consists of a training process and an application process using five user profiles. In the training process, the five user profiles are transformed to five user networks based on the cosine similarity, and an integrated user network is derived by weighted sum of each user network. The application process selects k-nearest neighbors (users) from the integrated user network derived in the training process, and recommends three of the most frequently used credit card by the k-nearest neighbors. In order to demonstrate the performance of the proposed system, we conducted experiments with real credit card user data and calculated the F1 Values. The F1 value of the proposed system was compared with that of the existing recommendation techniques. The results show that the proposed system provides better recommendation than the existing techniques. This paper not only contributes to solving the cold start problem that may occur in the personalized credit card recommendation scenario, but also is expected for financial companies to improve customer satisfactions and increase corporate profits by providing recommendation properly.