현세탄산염성분 및 해저교질물의 우라늄분포와 그의 조절
The measurements of uranium with nuclear fission track technique on the Holocene carbonate components and submarine cements in South Florida, U.S.A. and the Bahamas have allowed not only characteristic uranium concentrations but also spatial distribution. Relatively high uranium concentrations were found in coral skeletons (2.5 ppm). ooids (2.8 ppm), and peloids (3.2 ppm) whereas most of the modern calcareous organisms contain low uranium concentrations. Varied uranium concentrations were found in submarine cements; more than 3 ppm in acicular aragonite, 2 to 3 ppm in micritic Mg-calcite in inter- and intraparticle pores, and 0.7 to 2.8 ppm in micirtic envelopes. Heterogeneous distributions of uranium were quite common in both skeletons and inorganic carbonates. Marine organisms seem to discriminate against uranium while they are alive and thereby they contain low uranium concentrations whereas inorganic carbonate components incorporate uranium in equilibrium with seawater and thereby the contain high uranium concentration. In incorporation of uramiun into carbonate componets physiology and mineralogy seem to be important in organism whereas minerablogy and CO₂ content of seawater are thought to be important in inorganic components. Characteristic uranium concentrations and spatial distribution pattern in modern carbonates suggest that uranium can be used as a powerful diagenentic indicator in studying ancient carbonate rocks. This study reveals that the fission track technique is an advantageous tool in studying petrography