논문 상세보기

Performance Analysis of Sensor Systems for Space Situational Awareness KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/341066
서비스가 종료되어 열람이 제한될 수 있습니다.
한국우주과학회 (The Korean Space Science Society)
초록

With increased human activity in space, the risk of re-entry and collision between space objects is constantly increasing. Hence, the need for space situational awareness (SSA) programs has been acknowledged by many experienced space agencies. Optical and radar sensors, which enable the surveillance and tracking of space objects, are the most important technical components of SSA systems. In particular, combinations of radar systems and optical sensor networks play an outstanding role in SSA programs. At present, Korea operates the optical wide field patrol network (OWL-Net), the only optical system for tracking space objects. However, due to their dependence on weather conditions and observation time, it is not reasonable to use optical systems alone for SSA initiatives, as they have limited operational availability. Therefore, the strategies for developing radar systems should be considered for an efficient SSA system using currently available technology. The purpose of this paper is to analyze the performance of a radar system in detecting and tracking space objects. With the radar system investigated, the minimum sensitivity is defined as detection of a 1-m2 radar cross section (RCS) at an altitude of 2,000 km, with operating frequencies in the L, S, C, X or Ku-band. The results of power budget analysis showed that the maximum detection range of 2,000 km, which includes the low earth orbit (LEO) environment, can be achieved with a transmission power of 900 kW, transmit and receive antenna gains of 40 dB and 43 dB, respectively, a pulse width of 2 ms, and a signal processing gain of 13.3 dB, at a frequency of 1.3 GHz. We defined the key parameters of the radar following a performance analysis of the system. This research can thus provide guidelines for the conceptual design of radar systems for national SSA initiatives.

목차
1. INTRODUCTION
 2. SPACE SITUATIONAL AWARERNESS SYSTEM
 3. RADAR PERFOMANCE ANALYSIS
  3.1 Operational Scenario
  3.2 Radar Range Equation
  3.3 Reference Performance Analysis
  3.4 Power Budget Design
 4. CONCLUSION
 ACKNOWLEDGMENTS
 REFERENCES
저자
  • Eun-Jung Choi(Korea Astronomy and Space Science Institute, Daejeon 34055, Korea) Corresponding Author
  • Sungki Cho(Korea Astronomy and Space Science Institute, Daejeon 34055, Korea)
  • Jung Hyun Jo(Korea Astronomy and Space Science Institute, Daejeon 34055, Korea, Korea University of Science and Technology, Daejeon 34133, Korea)
  • Jang-Hyun Park(Korea Astronomy and Space Science Institute, Daejeon 34055, Korea)
  • Taejin Chung(Radar&Space Co., Ltd., Daejeon 34016, Korea)
  • Jaewoo Park(Radar&Space Co., Ltd., Daejeon 34016, Korea)
  • Hocheol Jeon(Radar&Space Co., Ltd., Daejeon 34016, Korea)
  • Ami Yun(Radar&Space Co., Ltd., Daejeon 34016, Korea)
  • Yonghui Lee(Radar&Space Co., Ltd., Daejeon 34016, Korea)