The amount of carbon dioxide emission is continuously increasing and many researchers are concerned about climate change caused by its emission. Hence, some technologies which can reduce its emission have been developed and commercialized in many industries. These technologies are commonly called Carbon Capture and Storage (CCS) technology. In conventional CCS technology, carbon dioxide gas produced from industrial processes was usually captured by basic liquid absorbent such as monoethanolamine(MEA) and so on. After it is captured by those absorbents, they was flown to desorption step and was compressed at high pressure and transported to suitable places such as deep ocean or deep underground. However, there exist some problems when carbon dioxide is stored in such places. For instance, leak into the atmosphere can occur. Also, some nations including Korea may have difficulty finding suitable places for its storage since area of the nations is not that large and the ground is not stable. So, the method that can utilize captured carbon dioxide has been developed. When carbon dioxide is combined with metal cation such as calcium ion, it becomes calcium carbonate (CaCO3) which can be used for various purposes like construction materials, pharmaceutical manufacture, additives and so on. This is called Carbon Capture and Utilization (CCU) technology. In this research, seawater was used to supply calcium ions. There contained much amount of calcium component in seawater and amount of seawater is virtually limitless. MEA was used as absorbents and saturated by simulated flue gas. Pretreated seawater was then added to saturated absorbent. When carbon dioxide gas is dissolved to MEA, it exist in forms of ions and they can easily produce precipitated calcium carbonate (PCC) salts by reacting with calcium ions contained in seawater.