논문 상세보기

연속체 요소를 사용한 유한요소해석의 휨 모멘트 계산 방법 및 최적의 요소 크기 KCI 등재

Bending Moment Calculation Method and Optimum Element Size for Finite Element Analysis with Continuum Elements

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/342182
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국전산구조공학회 논문집 (Journal of the Computational Structural Engineering Institute of Korea)
한국전산구조공학회 (Computational Structural Engineering Institute of Korea)
초록

비선형 유한요소해석 결과를 이용하여 철근콘크리트 부재를 설계를 하고자 할 경우 위험단면에서의 휨모멘트를 산정하여 야 한다. 본 논문에서는 연속체 요소를 사용한 철근콘크리트 유한요소해석 결과를 이용한 휨 모멘트 계산식을 제시하고 유한요소의 변위 함수의 차수에 따른 최적의 요소 크기를 제안하였다. 해석으로부터 산출된 응력을 적분하여 구한 휨 모멘트 와 정역학적 평형 조건을 이용하여 계산한 휨 모멘트를 비교하였다. 응력을 적분하는 방법에서는 철근에 의한 응력과 콘크 리트의 응력을 모두 고려하였다. 또한 유한요소해석으로 산출된 응력의 정확도에 영향을 주는 여러 요인들을 분석하고 적용 요소의 변위 함수와 요소 크기를 다르게 설정하여 그 영향을 확인하였다. 해석의 목적이 부재의 거동을 대략적으로 살펴보 는 목적이라면 1차 변위 함수를 사용하고 요소 크기가 해석 모델의 단면 높이의 25%정도라도 적절하다고 판단된다. 정확도가 높은 부재의 내력을 도출해야 할 경우에는 2차 변위 함수를 사용하고 요소 크기를 12.5%로 할 것을 제안한다.

When designing a reinforced concrete member using nonlinear finite element analysis results, the bending moment at the critical section should be calculated. In this paper, a bending moment calculation method using the results of reinforced concrete finite element analysis(FEA) using continuum elements is presented and the optimum element size according to the order of the displacement function of the finite element is proposed. The bending moments calculated by integrating the stresses from the FEA are compared with the bending moments calculated using the static equilibrium conditions. In the method of integrating the stress, both the stress due to the reinforcing bar and the stress of the concrete are considered. In addition, various factors affecting the accuracy of the stresses calculated by the FEA were analyzed and the influence of the displacement function and the element size was verified. If the purpose of the analysis is to roughly observe the behavior of the members, it is appropriate to use the first order displacement function and the element size should be about 25% of the section height of the analytical model. When the bending moment of a member with high accuracy is required, it is suggested that the secondary displacement function be used and the element size be 12.5%.

목차
1. 서 론
 2. 유한요소를 이용한 부재 내력 해석
  2.1 휨모멘트 계산 방법
  2.2 응력 오차의 원인
  2.3 유한요소 모델링 설정
  2.4 해석 결과 및 고찰
 3. 결 론
 감사의 글
 References
저자
  • 김윤영(동의대학교 기계자동차로봇부품공학부, Division of Mechanical, Automotive and Robot Component Engineering) | Yun-Young Kim
  • 한봉구(서울과학기술대학교 건설시스템공학과, Department of Civil Engineering, Seoul National University of Science & Technology) | Bong-Koo Han Corresponding author