Proper management of refrigerant mixtures containing chlorine and fluorine are gaining worldwide interest in the recent years as, they contribute to global warming and ozone depletion. according to the Montreal Protocol, developed nations have substituted HCFCs in refrigerators and air conditions synthetic greenhouse gas (SGGs) refrigerants such as, R-10 (CCl4), R-23 (CHF3), and R-134a (CH2FCF3). SGGs contribute to the increasing global warming potential. incineration, conventional treatment method of R-134a leads generation of Freon gas, due to excess air during the deacon reaction and due to the flame inhibition of the halogen compound. Therefore, this study proposes on the effective thermal treatment (high-temperature pyrolysis) of R-134a using numerical analysis. R-134a is usually known to have reaction characteristics which degrade only at temperatures reaches 800℃ and contains sufficient moisture in the furnace, HFC-134a refrigerant is treated efficiently by following chemical reaction.
C2H2F4+4H2O → 4HF+3H2+3CO2, 4HF+2Ca(OH)2 → 2CaF2+4H2O
in this study numerical calculation is performed for the relevant variables. As a result, very positive preliminary results showed about HFC-134a refrigerant treatment. Base on this, in the following study, organized variable research and demonstration experiment will be performed.