As of 2013, approximately 253 domestic incineration facilities including incineration facilities for municipal waste and industrial wastes were collected. The distribution of domestic incineration heat through these incineration facilities is estimated to reach about 1,756 thousands toe by 2013. In this study, a high temperature and pressure boiler was applied to evaluate the improvement effect of power generation efficiency of waste incineration facilities. It is possible to increase the power generation efficiency of the steam turbine by increasing the heat loss of the turbine through the high temperature and pressure depending on the steam pressure and the temperature. The boiler main steam amount is reduced by about 10% due to the high temperature and pressure, but the increase rate of the heat fall rate is larger than the decrease rate of the steam flow rate, so that the power generation efficiency is improved. In case of steam temperature, the steam temperature is increased by 50 ℃ at 500 ℃ and 20 kg/㎠ at the pressure of 20 kg/㎠×300 ℃, and it is increased by 10 kg/㎠ to 60 kg/㎠, electricity production changes were investigated. Electricity production increased with increasing temperature and pressure. The electricity production increased by 51.03 % at 40 kg/㎠×400 ℃ and by 89.07 % at 60 kg/㎠×500 ℃, compared to the standard condition of 20 kg/㎠×300 ℃ for comparison. The boiler main steam amount is reduced by about 10 % due to the high temperature and pressure, but the increase rate of the heat fall rate is larger than the decrease rate of the steam flow rate, so that the power generation efficiency is improved. In case of steam temperature, the steam temperature is increased by 50 ℃ at 500 ℃ and 20 kg/㎠ at the pressure of 20 kg/㎠×300 ℃, and it is increased by 10 kg/㎠ to 60 kg/㎠. Electricity production changes were investigated. Electricity production increased with increasing temperature and pressure. The electricity production increased by 51.03 % at 40 kg/㎠×400 ℃ and by 89.07 % at 60 kg/㎠×500 ℃, compared to the standard condition of 20 kg/㎠×300 ℃ for comparison.