Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as alternatives to perfluorinated sulfonic acid ionomers used as polymer electrolyte membranes for fuel cells. SPAES copolymers are suffering from degradation under harsh fuel cell operation conditions. One solution to overcome the decomposition issue is to fill SPAES copolymers into polymeric support films (e.g., poly(tetrafluoro ethylene), PTFE) with interconnected porous structures. It is difficult to fill the SPAES copolymers dissolved in polar aprotic solvents into PTFE support films owing to their different surface energies. In this study, a SPAES nanodispersion in a water-alcohol mixture is used to make defect-free pore-filling membranes where poly(ethylene glycol) oligomers are added to induce advanced morphologies for fast proton conduction.