The silver nanoparticles (AgNPs) incorporated reverse osmosis (RO) membranes with an excellent antibacterial property has been reported. However, the incorporated AgNPs could increase the hydraulic resistance of membrane, indicating the decline of water flux. Here, hybrid silver nanoparticles (Ag@SiO2, 400 nm) were strongly immobilized using Ag-S chemical bonding on the polyamide surface of RO membrane for both protecting the decline membrane performance and having a strong antimicrobial property. The membrane performance was unchanged after the immobilization of silver nanoparticles, when compared to that of unmodified membrane. In addition, the silver-polyamide composite membrane significant reduced the number of live bacteria attached on the membrane surface by 92.7 ± 1.8, 99.5 ± 0.3, and 73.3 ± 5.5% for E. coli, P. aeruginosa, and S. aureus, respectively. The strong antimicrobial property is ascribed to the combination effect by the directly attachment to bacteria surface and the penetration of released silver ions inside the cell membrane of bacteria.