Perfluorinated sulfonic acid ionomers have been used as representative membrane materials in a wide range of applications. Though PFSA ionomers have been well known as chemically durable materials, their chemical resistances should be improved further to apply them to practical fuel cell systems operated under harsh conditions. One plausible solution would be to fabricate reinforced membranes composed of proton-conducting ionomers and chemically durable porous support films. In this study, pore-filling membranes are prepared via the impregnation of PFSA ionomers into porous PTFE support films. The objective of this study is to systematically investigate the influences of pore characteristics on proton transport behavior and electrochemical single performances.