Ionic liquid composite membranes for facilitated CO2 transport
Cu nanoparticles generated by redox reduction with Fe2+ ions and porous KIT-6 were utilized for high selectivity and permeance. When positively polarized Cu nanoparticles were generated and porous KIT-6 materials were incorporated into ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIM BF4), these membranes showed the selectivity for CO2/N2 and CO2/CH4 was largely enhanced to 16.4 and 23.4, respectively while neat BMIMBF4 was 5.0 and 4.8, respectively. Furthermore, the CO2 permeance was also enhanced to 50.7 GPU. It was thought that these enhancements of separation performance was attributed to both the facilitated transport by polarized CuNPs and the increase of diffusivity by porous materials. Therefore, highly selective and permeable membrane for CO2 separation was successfully prepared.