Anion exchange membranes (AEMs) with polysulfone backbone with different cation chemistries for anion exchange membrane fuel cells (AEMFC) and vanadium redox flow batteries (VRFB)
The water uptake, ionic conductivity, vanadium (VO2+) permeability and stability of polysulfone (PSF) based AEMs in alkaline media and in strongly oxidizing solutions were assessed. The highest ion conductivity was obtained with PSF-trimethylammonium (TMA)+. PSF-TMA+ also had better alkaline stability in comparison to PSF-AEM with different bases. PSF-TMA+ was demonstrated to show fuel cell performance. PSF-TMA+ demonstrated a 40-fold reduction in vanadium (VO2+) permeability when compared to Nafion® membrane. Comprehensive 2D NMR studies verified that PSF-TMA+ remained chemically stable even after exposure to a 1.5 M vanadium(V) solution for 90 days. Excellent energy efficiencies (85%) were attained and sustained over several charge–discharge cycles for a vanadium redox flow battery prepared using the PSF-TMA+ separator.